ஆரியப்பட்டர் கணிதம் வாளியல் முன்னோடி

ஆரியபட்டர்: கணிதவியல், வானியல் முன்னோடி

10 OCT, 2017    

உலகுக்கு இந்தியா அளித்த கொடைகளில் முக்கியமானது பூஜ்ஜியம். பூஜ்ஜியம் இல்லாத கணிதத்தை கற்பனை செய்யவே முடியாது. அந்த பூஜ்ஜியத்தை முதன்முதலில் பயன்படுத்தியவராக பாரதத்தின் முதலாவது ஆரியபட்டர் (பொ.யு. 476- 550) கருதப்படுகிறார். கணிதத்திலும், வானியலிலும் உலக விஞ்ஞானிகளுக்கு முன்னோடியாகவும், பாரதம் வழங்கிய குருவாகவும் அவர் திகழ்கிறார்.

பாரதத்தில் மகதப் பேரரசு கோலோச்சிய காலகட்டத்தில், அதன் தலைநகரான பாடலிபுத்திரம் (தற்போதைய பிகார் மாநலம், பாட்னா) அருகே குசும்புரத்தில் பிறந்தவர் ஆரியபட்டர். அவர் தாரேகணா என்ற இடத்தில் பிறந்ததாகவும், கேரளத்தின் கொடுங்கலூரில் பிறந்ததாகவும் பலவாறான தகவல்கள் உள்ளன. தவிர, நர்மதை நதிக்கும் கோதாவரி நதிக்கும் இடைப்பட்ட அஸ்மகா நாட்டில் பிறந்தவர் என்று, முதலாவது பாஸ்கரர் குறிப்பிடுகிறார்.

ஆரியபட்டர் பிறந்த இடம் குறித்த சர்ச்சைகள் நிலவினாலும், பிறந்த ஆண்டை அவரே தனது ‘ஆரியபட்டீயம்’ நூலில் மிகத் தெளிவாகக் குறிப்பிட்டுள்ளார். அதில் “கலியுகம் துவங்கி 3,600 ஆண்டுகள் கழிந்த நிலையில், தனக்கு 23 வயது” என்று குறிப்பிட்டுள்ளார். அதைக் கணக்கிட்டால், பொதுயுக ஆண்டு 499-இல் அவர் பிறந்தார் என்பது தெளிவாகிறது.

அதேபோல, அவரது பெயரை ஆரியபடர் என்று சொல்வதா, ஆரியபட்டர் என்று சொல்வதா என்பதிலும் குழப்பம் உண்டு. எனினும், பொதுவழக்கில் ஆரியபட்டர் என்பதே நிலைபெற்றுவிட்டது.

இரண்டாவதாக மற்றொரு ஆரியபட்டர் (பொ.யு. 950- 1100) இருந்துள்ளதால், அவரை முதலாவது ஆரியபட்டர் என்று குறிப்பிடுவது மரபாகும். அரபி விஞ்ஞான உலகம் அவரை ‘அர்ஜெஹிர்’ என்று குறிப்பிடுகிறது.

குசும்புரத்தில் குருகுலக்கல்வி கற்ற ஆரியபட்டர், நாலந்தா பல்கலைக்கழகத்தில் உயர்கல்வி கற்றார். அடுத்து மகதப் பேரரசின் ஆதரவுடன் கணிதம், வானியல் ஆய்வுகளில் அவர் ஈடுபட்டார். தாரேகணா என்ற இடத்தில் இருந்த சூரியனார் கோயில் அருகே அவர் நிறுவிய வானாய்வகம், வானியலில் பல அரிய கண்டுபிடிப்புகளை நிகழ்த்திய இடமாகும். அவரது சிறப்பை மதித்து, நாலந்தா பல்கலைக்கழகத்தின் தலைமை குருவாக நியமனம் செய்தார் மன்னர் புத்த குப்தர் (பொ.யு. 476- 495).

ஆரியபட்டர் எழுதிய நூல்கள் மூன்று. அவற்றில் முதலாவது, சமஸ்கிருதத்தில் எழுதப்பட்ட ஆரியபட்டீயம். இது மட்டுமே நமக்குக் கிடைத்துள்ளது. இதில் எண்களை பிராமி லிபியில் பட்டர் எழுதியிருக்கிறார்.

அடுத்து ஆரிய சித்தாந்தம் என்ற நூலை அவர் எழுதியிருப்பது, அவருக்குப் பிந்தைய கணித மேதைகளான வராஹமிகிரர், பிரம்மகுப்தர், பாஸ்கரர் ஆகியோரின் நூல் மேற்கோள்களிலிருந்து தெரியவருகிறது.

மூன்றாவது நூல், அரபி மொழியில் மொழிபெயர்க்கப்பட்ட ‘அல்-நன்ஃப்’ (Al-nanf) நூலாகக் கிடைக்கிறது. சூரிய சித்தாந்த அடிப்படையிலானவையாக இந்த நூல்கள் உள்ளன.

ஆரியபட்டீயம்:

ஆரியபட்டீயம் நூல் முழுவதும் செய்யுள் வடிவில் சூத்திரங்களாக எழுதப்பட்டதாகும். 13 அறிமுகச் செய்யுள்கள், 108 அடிப்படைச் செய்யுள்களுடன் மொத்தம் 121 செய்யுள்களைக் கொண்டுள்ள ஆரியபட்டீயம், 4 பிரிவுகளாகப் பகுக்கப்பட்டுள்ளது. இதை எழுதும்போது ஆரியபட்டருக்கு வயது 23 மட்டுமே.

அதன் முதல் பிரிவான கிடிபாதம் (13 செய்யுள்கள்), காலத்தின் மிகப்பெரும் அலகுகள் குறித்து விளக்குகிறது. கல்பம், மன்வந்திரம், யுகம் ஆகியவற்றின் காலக் கணக்கீடுகளை இதில் ஆரியபட்டர் விளக்கியுள்ளார். லகதரின் வேதாங்க ஜோதிஷம் (பொ.யு. முதல் நூற்றாண்டு) தெரிவித்த பல கருத்துகளுடந் முரண்பட்டு தனது கருத்துகளை இதில் முன்வைத்துள்ளார் பட்டர்.

இந்தப் பிரபஞ்சம் தோன்றிய மகா யுகத்தின் துவக்கம் 43.2 லட்சம் ஆண்டுகளுக்கு முன் என்பது பட்டரின் முடிவு. நவீன விஞ்ஞானமும் இந்தக் கணக்குடன் ஒத்துப் போகிறது. திரிகோணவியலின் அடிப்படையான சைன் அட்டவணையையும் கிடிபாதத்தில் பட்டர் அளித்துள்ளார்.

நூலின் இரண்டாவது பிரிவான கணிதபாதம் (33 செய்யுள்கள்), எண்ணியல் (Arithmatics), வடிவியல், வானியலில் பயன்படும் கருவிகள், இருபடிச் சமன்பாடுகள் (Quadratic Equations), தேரவியலாச் சமன்பாடுகள்(Interminate Equations), அடுக்குத் தொடர்கள் (Power Series) குறித்து விளக்குகிறது.

மூன்றாவது பிரிவான காலக்கியபாதம் (25 செய்யுள்கள்), காலப் பகுப்பையும், நேரத்தின் சிறு அலகுகளையும் விளக்குகிறது. நாள், வாரம், மாதம் குறித்த விவரங்களும், கிழமைகளின் பெயர்களும் இப்பிரிவில் கூறப்படுகின்றன.

நான்காவது பிரிவான கோளபாதம் (50 செய்யுள்கள்), கோள்களின் நிலை, பூமியின் வடிவம், அதன் இயக்கம், பகல்- இரவு தோன்றுவதன் காரணம், கிரஹணங்கள் தோன்றுவதன் காரணம், ராசி மண்டலம் ஆகியவற்றை விவரிக்கிறது.

மகத்தான கண்டுபிடிப்புகள்:

ஆரியபட்டரின் பெருமைகளை வெளிநாட்டினர் உணர்ந்து மலைக்கின்றனர். அவர் கண்டறிந்த ஒவ்வொன்றும் கணிதம், வானியல் துறைகளில் முன்னோடியானவை. அவை அரபியில் மொழி பெயர்க்கப்பட்டு, பின்னாளில் லத்தீனிலும் கிரேக்கத்திலும் மொழிபெயர்க்கப்பட்டு, உலகம் முழுவதும் பரவின. அவையே நவீன கணிதத்துக்கும் வானியலுக்கும் அடிப்படையாகின.

ஆரியபட்டீயத்தின் கணிதபாதமே பின்னாளில் அல்ஜீப்ராவாக (Algebra) வடிவெடுத்தது. கிடிபாதமே நவீன திரிகோணவியலுக்கான (Trigonometry) ஆதாரமாகும். காலக்கியபாதமும் கோளபாதமும் தற்கால வானியலுக்கு (Astronomy) ஆணிவேராகும். ஆரியபட்டரின் மேலும் சில சிறப்பான கண்டுபிடிப்புகளை தொடர்ந்து காணலாம்:

0. பூமி கோள வடிவமானது. பூமியின் விட்டம் 1,050 யோஜனை (ஒரு யோஜனை= 13.6 கி.மீ.). பூமியின் சுற்றளவு 44,860 கி.மீ. பூமி தன்னைத்தானே சுற்றிக் கொள்கிறது. அவ்வாறு ஒரு முறை பூமி சுற்ற 23 மணி, 56 நிமிடம், 4.1 விநாடி ஆகிறது (இதனை அவர் நாழிகையில் குறிப்பிடுகிறார்). பூமி தன்னைத்தானே சுற்றிக்கொள்வதால்தான் இரவும் பகலும் ஏற்படுகின்றன.

0. வானிலுள்ள கோள்கள் அனைத்தும் கோள வடிவிலானவை. சூரியன், சந்திரனும் கோள வடிவிலானவை. சூரியனின் ஒளியையே சந்திரனும் கோள்களும் பிரதிபலிக்கின்றன. புதன், வெள்ளி, செவ்வாய், பூமி, சந்திரன், சூரியன், வியாழன், சனி என்ற வரிசையில் வானில் நீள்வட்டப்பாதையில் கோள்கள் சுற்றுகின்றன. (இதில் அவர் சூரியனையும் ஒரு கோளாகக் கொண்டிருப்பது மட்டுமே தவறு. ஆனால் கிரேக்க அறிஞர்கள் பூமி தட்டையானது என்று சொல்லி வந்தபோது அதன் உண்மையான வடிவத்தையும், சூரியக் குடும்பத்தில் கோள்களின் வரிசையையும் துல்லியமாகத் தெரிவித்திருப்பது குறிப்பிடத் தக்கது).

0. வான மண்டலத்தில் பூமி ஒரு சுற்று சுற்றிவர ஆகும் காலமே ஆண்டு. அது 365.8586805 நாள்கள். அதாவது, 365 நாள்கள், 6 மணி, 12 நிமிடம், 30 விநாடிகள். (நவீனக் கணக்கீட்டில் இதன் பிழை 3 நிமிடம், 20 விநாடிகள் மட்டுமே!)

0. வட்டத்தின் சுற்றளவையும் பரப்பளவையும் கண்டறியப் பயன்படும் ‘பை’ (Pie) என்ற மாறிலியின் (22/7 = 3.1416) மதிப்பை முதன்முதலில் கண்டறிந்தவர் ஆரியபட்டரே. அதற்கான சூத்திரத்தையும் அவர் அளித்திருக்கிறார்.

0. சந்திர கிரஹணம் பூமியின் நிழலாலும், சூரிய கிரஹணம் இடையே புகும் சந்திரனாலும் ஏற்படுகின்றன என்பதை தெளிவாக விளக்கினார். (ராகு} கேது பாம்புகள் சந்திரனை விழுங்குகின்றன என்ற பாமர நம்பிக்கையை முதலில் மறுத்தவர் ஆரியபட்டரே).

0. வட்டத்தின் சுற்றளவை அறிய அதன் விட்டத்தை மாறிலியால் (22/7 x D) பெருக்க வேண்டும். முக்கோணத்தின் பரப்பளவை அறிய அதன் அடிப்பக்க நீளத்தை, செங்குத்து உயரத்தால் பெருக்கி, இரண்டால் வகுக்க வேண்டும் (1/2 bh) என்று வாய்பாட்டை உருவாக்கியவர். கோளத்தின் கண அளவை அறியும் சூத்திரத்தையும் அவர் அளித்துள்ளார்.

0. சைன் அட்டவணையை முதலில் உருவாக்கியவர் பட்டரே. அவர், ஜ்ய (சைன்), கோஜ்ய (கோசைன்), உத்கிரமஜ்ய (வெர்சைன்), ஒத்கிரமஜ்ய (இன்வர்சைன்) ஆகியவை குறித்து விளக்கியுள்ளார். அது மட்டுமல்லாது, பூஜ்ஜியம் பாகை முதல் 90 பாகை வரை 3.75 பாகை இடைவெளியில் ஜ்ய- சைன் (நண்ய்), உத்கிரமஜ்ய- வெர்சைன் (யங்ழ்ள்ண்ய்) ஆகியவற்றின் மதிப்புகளை 4 தசமஸ்தானங்களில் பட்டியலாகவும் வழங்கியுள்ளார் பட்டர். இதுவே நவீன திரிகோணவியலின் அடிப்படை.

0. வர்க்கத் தொடர்கள், கணத்தொடர்களின் கூட்டுத்தொகையை அறிவதற்கான முறையையும் பட்டர் விளக்கியுள்ளார். மூன்று எண்களிலிருந்து (A, B, C) அறிய வராத நான்காவது குறியீட்டு எண்ணின் (x) மதிப்பைக் கணக்கிடும் மூன்று எண் விதியையும் அவர் உருவாக்கினார். இவை பின்னாளில் இயற்கணிதம் எனப்படும் அல்ஜீப்ராவாக வளர்ந்தன.

0. வலமிருந்து கடைசி எண் ஒன்று, இரண்டாவது பத்து, மூன்றாவது நூறு, நான்காவது ஆயிரம் என்று வரும் எண்களின் இடமதிப்பு குறியீட்டு முறையை (Place Value System) அவர் விளக்கியுள்ளார்.

0. பூஜ்ஜியம் பற்றிக் குறிப்பிடாவிட்டாலும் அதன் பயன்பாட்டை ஆரியபட்டீயத்தில் பல இடங்களில் அவர் வெளிப்படுத்துகிறார். பிரெஞ்ச் கணிதமேதையான ஜார்ஜ் இர்ஃபா,  “இடமதிப்பு குறியீட்டு முறையையும், திரிகோண விதிகளையும் காணும்போது அவர் பூஜ்ஜியத்தைப் பயன்படுத்தியிருப்பது உறுதியாகிறது” என்கிறார்.

மாபெரும் சாதனையாளர்:

மேற்கண்ட கண்டுபிடிப்புகளை 1,500 ஆண்டுகளுக்கு முன் நிகழ்த்தியிருக்கிறார் ஆரியபட்டர். எந்த நவீன வசதியும் இல்லாத காலத்தில், தனது நுண்ணறிவை மட்டுமே பயன்படுத்தி இந்த மகத்தான உண்மைகளை நூலாக்கியுள்ளார் அவர்.

தனது கண்டுபிடிப்புகளை நிரூபிக்க சக்ர யந்திரம், சங்கு யந்திரம், சாயா யந்திரம், தணுர் யந்திரம், சாத்ர யந்திரம், யஷ்டி யந்திரம் ஆகியவற்றையும் அவர் வடிவமைத்தார். காலக் கணக்கீட்டுக்காக நீர்க் கடிகாரத்தையும் அவர் உருவாக்கினார்.

அவர் உருவாக்கிய காலப் பகுப்பு அட்டவணைகளே பின்னாளில் பாரதத்தில் பஞ்சாங்கமாக (ஹிந்து நாள்காட்டி) வடிவெடுத்தன. பாரதத்தில் மட்டுமல்லாது இரான், ஆப்கானிஸ்தான் உள்ளிட்ட அண்டை நாடுகளிலும் ஆரியபட்டரின் நாள்காட்டியை அடிப்படையாகக் கொண்டே ஜலாலி நாள்காட்டி (Jalali Calendar) கடைபிடிக்கப்படுகிறது.

கணிதம், திரிகோணவியல், வானியல், காலப் பகுப்பியல் உள்ளிட்ட துறைகளில் நவீன விஞ்ஞானிகளுக்கு மூலவராக ஆரியபட்டர் திகழ்கிறார். எனவேதான், 1975-இல் இஸ்ரோ விண்ணில் செலுத்திய முதல் செயற்கைக்கோளுக்கு ‘ஆரியபட்டா’ என்று பெயர் சூட்டப்பட்டது. அவரது நினைவைப் போற்றும் வகையில் 2010 முதல் பிகாரில் ஆரியபட்டா அறிவு பல்கலைக்கழகம் செயல்படுகிறது. நைனிடாலில் உள்ள வானாய்வகம் (ARIOS) அவரது பெயருடன் இயங்குகிறது.

ஆரியபட்டரின் அடியொற்றி, வராஹமிகிரர், பாஸ்கரர், பிரம்மகுப்தர், யதிவிருஷபர், ஸ்ரீதரர், மகாவீரர், ஹேமசந்திரர் உள்ளிட்ட கணித, வானியல் மேதைகளின் பெரும் படை பாரதத்தில் உருவானது. அந்த ஞானப் பெருக்கின் தொடர்ச்சியாகவே இந்திய விஞ்ஞானிகள் உலக அளவில் இன்று முத்திரை பதித்து வருகிறார்கள்.

– தினமணி இளைஞர்மணி (10.10.2017)

ஆரியபட்டர்: கணிதவியல், வானியல் முன்னோடி

———————————————————————————————————

ARYABHATA (476 – 550)

Aryabhata was a famous astronomer and the first great Indian mathematician. He is known for an important treatise, translated in Europe in the 19th century, called the Aryabhatiya, written in Sanskrit (the sacred language of brahmins) in 499 about astronomy and mathematics.

Unlike the geocentric doctrine of Ptolemy, which was widely read and inherited from Aristotle, according to which the Earth was immobile at the centre of the universe, Aryabhata argued that the Earth rotated. In the Aryabhatiya, he described the extraction algorithms of square roots and cube roots; he used a positional decimal system including graphs that is similar to our own and where the use of zero appeared implicitly. This short treatise on astronomy, published in 499, contains an overview of Indian mathematics and in particular 66 theorems of arithmetic, algebra, and plane and spherical trigonometry.

The results of continued fractions, second-degree equations and series of powers are also described. To do this, Aryabhata invented a system of representation of numbers based on the consonants in the Indian alphabet, eventually followed by vowels for the large numbers. The Aryabhatiya contains exact formulas for the sum of n prime numbers, their squares or their cubes; it also includes a formula to calculate the area of a triangle or a circle as well as the approximate value 62 832/20 000 for the number π.

The text also includes a systematic treatment of the position of planets in space, provides an excellent order of magnitude of the circumference of the Earth, and suggests that the apparent rotation of the skies due to the axial rotation of the Earth. The use of the decimal system is one of the vectors of development of Arabic mathematics in arithmetic and algebra. His fame has spanned centuries and in his honour, the first Indian satellite, launched April 19, 1975, and a lunar crater are named after him.

—————————————————————————————————–

Aryabhata (476 – 550)

Aryabhata was a famous astronomer and the first great Indian mathematician. He is known for an important treatise, translated in Europe in the 19th century, called the Aryabhatiya, written in Sanskrit (the sacred language of brahmins) in 499 about astronomy and mathematics.

Unlike the geocentric doctrine of Ptolemy, which was widely read and inherited from Aristotle, according to which the Earth was immobile at the centre of the universe, Aryabhata argued that the Earth rotated. In the Aryabhatiya, he described the extraction algorithms of square roots and cube roots; he used a positional decimal system including graphs that is similar to our own and where the use of zero appeared implicitly. This short treatise on astronomy, published in 499, contains an overview of Indian mathematics and in particular 66 theorems of arithmetic, algebra, and plane and spherical trigonometry. The results of continued fractions, second-degree equations and series of powers are also described. To do this, Aryabhata invented a system of representation of numbers based on the consonants in the Indian alphabet, eventually followed by vowels for the large numbers.

The Aryabhatiya contains exact formulas for the sum of n prime numbers, their squares or their cubes; it also includes a formula to calculate the area of a triangle or a circle as well as the approximate value 62 832/20 000 for the number π. The text also includes a systematic treatment of the position of planets in space, provides an excellent order of magnitude of the circumference of the Earth, and suggests that the apparent rotation of the skies due to the axial rotation of the Earth. The use of the decimal system is one of the vectors of development of Arabic mathematics in arithmetic and algebra. His fame has spanned centuries and in his honour, the first Indian satellite, launched April 19, 1975, and a lunar crater are named after him.

—————————————————————————————————————————-
How Aryabhata got the earth’s circumference right 

Vyasa Shastry
15 Feb 2018
Unravelling the mystery behind the ancient mathematician – astronomer’s astounding feat

In today’s age, “How far is the stream?” is an oft-repeated query that trekking and hiking groups brace themselves for from the newbies, before breaking into a wry smile. They then recount an amusing anecdote and proceed to watch the blood drain from the unsuspecting tyro’s face. The story, surely not common to a specific Indian culture or geography, roughly follows the same narrative. 
As the story goes, that one time, the group found itself disoriented in the middle of a hike on a hill in the hinterland, after being baked in the sun for hours.To add to the misery, they were dangerously low on food and water, dehydrated even. 

They somehow soldiered along in the receding sun, dragging their feet along the forest to find a lone countryman chopping firewood and doing his thing in the middle of nowhere. Ecstatic upon finding a human, they proceeded to ask him for directions. The farmhand assured them that they had to walk for 10 minutes in the same direction to find the most gorgeous stream abutting a jeep track; another 15-minute walk along the path would take them to the hamlet that everyone had told them about. 
All good, then. Except, to everyone’s dismay, they would reach the stream only at dusk, a full one and half hours later. The bigger question now stared them in the face: Exactly how far were they from civilization? 
In the annals of underestimates, the one made by Christopher Columbus perhaps ranks at the top. While the rest of Europe was busily preoccupied with the Portuguese efforts to encircle Africa en route to India, Columbus looked westward to achieve the same end result. He had even correctly taken the shape of the earth into account. 
However, he believed in the size of the Eurasian landmass according to inflated Greek estimates. Additionally, he failed to grasp the actual units used to calculate the earth’s size. The result? 
He underestimated the distance between the Canary Islands and Japan by a factor of 80%, a distance that no ship of the time could have traversed. Luckily for him, he found another continent in his route to Asia. If Columbus arrived at such an error using European estimates, how did Aryabhata compute the earth’s circumference so accurately (less than 1% error) nearly a thousand years ago?
Stellar observations
As it turns out, our forefathers were quite curious and observant about the motion of celestial bodies like the sun, moon, stars and planets. Even though we accept the statements, “The sun rises in the east” and “The sun is directly overhead at noon” at face value, our ancestors had noticed the various patterns of apparent motion of these heavenly bodies.
Expand
Both the sun and the moon are in continuous motion as seen by an observer on the earth; the sun and the moon cover a specific angular distance (1° and 13°, roughly) against a background of stars every day. That is not all. A special feature of our earth is the tilt of its axis (about 23.5°) with its orbital plane. They observed the differences in the directions between the earth’s rotation and revolution. How did they manage to do all that? 
Well, if there were to be no difference, the sun would have risen and set at the same position each day and the duration of each day and night would be roughly similar all over the world. Instead, every year, the point of sunrise and sunset move in a seesaw-ey, to-and-fro motion. 
Expand
For example, the sun was exactly east at sunrise on 20 March last year, the spring equinox. On this corresponding day every year, the duration of the day is equal all over the earth and the sun is exactly overhead at noon on the equator. For a person standing at the equator on this date, this means that objects will not cast a shadow at noon.
From here until late June, the point of sunrise progressively shifts to the north (and correspondingly, the latitude of zero shadows at noon) until it reaches the northernmost extent on 21 June (the summer solstice) at the Tropic of Cancer. This also results in the length of day gradually increasing until it reaches a maximum in the northern hemisphere. 
Expand
Following the summer solstice, the sun begins its “southward” journey with a date on top of the equator on the autumnal equinox (22 September) and over the Tropic of Capricorn (22 December) before it proceeds to move northward again. 
Of course, this is written from the perspective of the observers in the northern hemisphere and these seasonal trends in the southern hemisphere are exactly reversed. Therefore, for someone located between the tropics, the sun is directly overhead at noon twice a year; and on the tropics, it happens only once—on the solstice. These dates can vary by a day or two in the short term since the earth revolves around the sun in an orbit of 365.25 days, as opposed to the Gregorian calendar’s 365. Our ancestors kept track of these observations in order to sow seasonal crops and monitor reserves of food. 
Since the earth is nearly spherical (it is a little flattened along the poles compared to the equator), the geometrical properties along its surface are different to the traditional geometry that we know of. For instance, the shortest distance between two points on a flat surface is a straight line; on a spherical surface, it is a path along something called as a great circle.
A circle drawn on a spherical surface such that it divides the sphere into two equal hemispheres is a great circle – you could visualize this as slicing a ball exactly into half, with the slicer passing through its centre, and along the two points. These great circles are useful in navigation since one can determine the shortest path between two points; they are also useful tools employed in astronomy and crystallography. 
Some of these concepts of spherical geometry can also be used to define the areas that we inhabit, just like the main road and a crossroad system would define a particular intersection in a locality. 
Expand
Two types of imaginary grid lines were thus used to define a position on the earth’s surface: latitude, which specifies the north-south position, and longitude, which specifies the east-west position. Longitudes run north to south from pole to pole, whereas latitudes run across. The crucial difference between the two is that while every longitude is a great circle, the only latitudinal great circle is the equator.
Hence, the difference between two successive longitudes differing by 1 degree at the same latitude is maximum at the equator (about 111km), and gradually decreases to zero as we move towards the north or south poles. This shows up in maps with areas such as Canada and Greenland being grossly overestimated; the corresponding view on a globe shows their real size. However, regardless of the latitude, all points on a given longitude experience the same local time. 
Now that we’ve wrapped our head around middle school geography, we can now proceed to understand how our forefathers computed the earth’s diameter with astronomical observations. 
The deliberations of the ancients
The first known person to calculate the circumference of the earth was the Greek astronomer Eratosthenes (as the legend goes, without leaving Egypt), during his lifetime between the 3rd and 2nd century BC. He observed the zero shadow at noon in Syene (modern-day Aswan) at the summer solstice and concluded that it was on the Tropic of Cancer. 
Expand
On the same corresponding day (presumably on another year), he measured the length of the shadow of a known pole at noon in Alexandria and found that the angle cast by the sun’s rays that day was one-fiftieth of a circle. Since a circle has 360 degrees, all he had to do was to find out the distance between Alexandria and Syene, and he could calculate the earth’s circumference. 
While there is some debate regarding the actual unit of measurement used, the common estimates of error for his exercise range from 10-15%, a remarkable value for the time. 
Understandably, there were some errors in his measurement due to some of the assumptions he made. One, the earth is not a perfect sphere, albeit the scale of this error is only one-third of a per cent. Two, the two locations were not on the same longitude and hence it is likely that the distance measurements did not happen along a great circle. Three, the angle of tilt of the earth’s axis is not fixed but wobbles very slowly between 22 and 24.5 degrees (over thousands of years) and hence it introduces a small error in the measurement of the angle of the sun’s rays at noon. Using modern methods and Eratosthenes’ logic, an accurate value can be calculated. 
But this still does not explain how Aryabhata got it right since he would have had to encounter the same errors. In the seventh gitikapada of his seminal work Aryabhatiya (Aryabhatiya of Aryabhata, critically edited by K.S. Shukla and K.V. Sarma, Indian National Science Academy) and accompanying commentaries by Bhaskara I and others, the value of the earth’s diameter is given as 1,050 yojanas, which translates to 3,300 yojanas as the equatorial circumference (based on Aryabhata’s extremely accurate value of pi, 3.1416). 
The size of the yojana was not fixed as it was pegged to the height of a man or the width of a finger. Therefore, different astronomers used different scales of measurement. For example, Bhaskara II in the 12th century calculated the earth’s diameter as 1,581 yojanas (4,967 as the circumference). These were different numbers but the ratios between the different values used by these astronomers were consistent, suggesting that they had just used different standard units bearing the same name. 
Modern estimates suggest that Aryabhata’s computation was 39,968km (24,835 miles), just off the currently accepted value of 40,074km by an incredible 0.27%. All this may sound easy in theory, except when you realize that these remarkable calculations were made without the aid of an accurate timekeeping device (like a chronometer) or a standard unit of length (with the resolution in parts of a millimetre). 
The plot further thickens when you look up the works of astronomers during the Islamic Golden Age. Many of Aryabhata’s concepts and calculations found themselves a place in astronomical tables (or zij, in Arabic) of Persian and Arabian mathematicians. 
One of the problems that was the driving force for astronomy in the Islamic world was the finding qibla, the direction of the Kaaba in Mecca. It is the direction that Muslims face during salah, their daily prayers. A precise understanding of spherical geometry was necessary in order to orient sacred structures in the right direction, which required contributions from a lot of Muslim scholars of the time. 
Expand
One such astronomer, Abu Rayhan al-Biruni, also ended up calculating the radius of the earth. Using trigonometry, he calculated the height of a mountain (in present-day Pakistan) by observing the peak from two different points on the plain. He then calculated the angle of dip from the peak to the horizon using an angle measuring instrument. He used these values to find the radius of the earth as the horizon, the mountain’s summit and the earth’s centre form a right-angled triangle. 
His estimate was ~6,340km, an error of 16.8km when compared to the modern value of 6,356.8km (polar radius). Mysteriously, his error is 0.26%, which is in the same league as Aryabhata’s error. Could this have been his method?
I then turned to Columbus once again, for inspiration. 
On his fourth voyage, he found himself in distressing circumstances, having beached his two caravels in Jamaica in 1503. The natives initially welcomed the castaways and fed them for a few months, but his sailors cheated and stole food from them. Faced with dire consequences due to the ensuing hostilities, he found himself armed with Regiomontanus’s almanack. He then used the prior knowledge of a lunar eclipse in 1504 (corrected for his time zone, of course) to threaten the natives and restore food supplies, until a relief caravel arrived from Spain. 
A lunar eclipse varies from a solar one in many ways: the apparent sizes of the sun and the moon as observed from the earth are roughly similar. Hence, when the moon comes in the sun’s path (as seen on the earth), we observe the moon just about completely engulfing the sun during a total eclipse. 
For any given solar eclipse, the locations where totality is observed fall on a narrow band on the earth, that too for a short while (for a maximum of about seven and half minutes). However, from the moon’s perspective, the earth casts a far larger shadow (rather than just about covering the sun). Therefore, a total lunar eclipse is usually much longer (in hours) and totality can be viewed from almost half the earth. Just as Columbus utilized this knowledge to his benefit, could Aryabhata have followed suit to calculate the earth’s size?
Thankfully, some clues can be gleaned from Nasa’s catalogue of eclipses. Crucially, the catalogue notes that around Aryabhata’s time (before the widely accepted epoch of the Aryabhatiya, 499 AD), three total lunar eclipses were observed from the Indian subcontinent: July 492, May 495 and November 495, all three in totality for more than an hour and half. Could he have keenly observed the progression of the earth’s shadow to come up with the answer? 
The last leg
In my pursuit for more information, I spoke to B.S. Shylaja, the director of the Jawaharlal Nehru Planetarium in Bengaluru. An experimental astrophysicist by training, Shylaja has authored several popular science books and scholarly papers on astronomy. 
“Yes, eclipses were the only tools earlier navigators and astronomers had for establishing the longitude at sea. Unfortunately, there were serious errors. If you see the maps prior to say the 15th century, they look horribly distorted; the Indian astronomers were no exception. They kept an elaborate record of daily observations of shadow lengths, angles between heavenly bodies and applied these to the formulae they knew. They always expressed the timings of the eclipses in terms of the shadow length of the gnomon (the part of a sundial that casts the shadow) and applied a correction for longitude called deshantara. Things only changed with the discovery of Galilean moons,” she said, referring to Galileo’s scientific proposal to calculate the longitude. I was intrigued.
In my quest to understand Aryabhata’s methods, I got in touch with K. Ramasubramanian, a professor at IIT Bombay who is an authority on the subject and has written several books on the contributions of Indian astronomers over the ages. He also teaches a popular course on Indian mathematics (one of the video lectures can be found here). He gives valuable insight regarding measuring instruments and how Aryabhata could have achieved the accuracy of the values obtained.
“Our astronomers were able to give the period of the moon correct to five decimal places,” he said over the phone. “I don’t think any single individual would have been able to work out any of this on their own. They maintained oral records over generations, iteratively worked out the values based on theoretical calculations, and obtained updated values. The measuring instruments used were not unique to us; it was used all over the world by astronomers of the time—gnomon, angle measuring devices, measuring sticks and water clocks. Besides, our astronomers also used formulae that took errors like parallax into account.”
Expectantly, I proceeded to quiz him regarding Aryabhata’s method, to which he replied, “Indian astronomers were quite familiar with the concept of longitude. They had the concept of deshantara—basically a correction for the local time at a longitude, calculated from the distance to a reference location, which was Ujjain. Since they could have determined the latitude easily using shadow lengths of a gnomon at noon, my guess is that they used it to mark points on the earth at equal latitude and measured the distance between them.” Voila!
In the spirit of Columbus, I had sailed west when my answer lay in the east; like the trekkers at the start of the story, I had now found the way to get off al-Biruni’s mountain. I had looked at the darkened edge of the moon when, in fact, the answer was at the height of noon.
Expand
Aryabhata perhaps identified two different locations on the same latitude by monitoring shadow lengths at noon (using a gnomon) and then proceeded to calculate the difference in time (by observing the moon’s position or using a water clock) and terrestrial distance between these two locations. Since each degree of longitude corresponds to four minutes, the terrestrial distance of 1° longitude multiplied by 360 would yield the earth’s circumference at that latitude. 
Since Aryabhata lived in India (north of the equator), he would have calculated the value alright, but it wouldn’t have been a great circle. This might not have been a limitation in his case as Aryabhata was quite conversant in trigonometry (as an aside, he had, in fact, computed an accurate table of sines), which he could have used to calculate the equatorial circumference of the earth. 
While he was observing rays at different times, this is a case of making hay while the sun shines.
The author gratefully acknowledges the guidance received from and the contributions made by B.S. Shylaja of the Jawaharlal Nehru Planetarium and K. Ramasubramanian of IIT Bombay in the formulation of this article.
Vyasa Shastry is a materials engineer and a consultant, who aspires to be a polymath in the future. In his spare time, he writes about science, technology, sport and society. He has contributed to The Hindu (thREAD) and Scroll.
Comments are welcome at feedback@https://www.livemint.com/livemint.com
About editor 2171 Articles
Writer and Journalist living in Canada since 1987. Tamil activist.

Be the first to comment

Leave a Reply